If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-6+x=0
a = 5; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·5·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*5}=\frac{-12}{10} =-1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*5}=\frac{10}{10} =1 $
| 54/x^2=2x | | 8(3x+4x)=28 | | 28.7x=401.8 | | -5/2x-5=4/2x-3 | | -3y+3(-6y-7)=-8+2(-6-y) | | 1.2=3(c-2) | | 300-x=314 | | 2x-111+9+x=180 | | a-6=16. | | 62+x=11 | | 3x+21=5x-2 | | 13−11i–√7=0 | | 50=26-4(1-4w) | | 0.0608x+0.87x=2288 | | 4=-6+v | | x+25.5=180 | | 0.7×+y=340 | | (2x-2)+(180-70-x)=180 | | -2(y)/2=12 | | x-5x+-10=9+2x+-7 | | p-6=2p+2 | | S(t)=3t^2-14t-24 | | 1/x=0.53 | | C2+6c=55 | | 2x=4x=-28 | | 14n+20=7n+76 | | 8m^2-18m+9=0 | | 36-7x=10x | | 16q+23=15q-81 | | 8(x+2)+5x=−4(x−1)−5 | | 10(2x-15)=24x | | 1/4x-10=-8 |